A NOVEL FRAGMENTATION REACTION OF AN  $\alpha$ ,  $\beta$ -EPOXYCYCLOPENTANONE. STEREOSELECTIVE FORMATION OF TRISUBSTITUTED E-DOUBLE BOND

Kazuo TSUZUKI, Hisanobu HASHIMOTO, Haruhisa SHIRAHAMA, and Takeshi MATSUMOTO Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

<u>cis</u>-1,6a-Epoxy-3a-methyloctahydropentalen-2-one readily undergoes fragmentation to give stereoselectively methyl (E)-3-methyl-7-oxo-2-octenoate in 75% yield, on treatment with a catalytic amount of sodium carbonate in methanol. A pericyclic mechanism is suggested for the new ring opening reaction.

In the course of studies on the synthesis of a certain sesquiterpene,<sup>1)</sup> we treated <u>cis</u>-1,6a-epoxy-3a-methyloctahydropentalen-2-one  $1^{2,3,4}$  (2g) with dil. methanolic Na<sub>2</sub>CO<sub>3</sub> (0.2g/30cm<sup>3</sup>) at rt (5h) to obtain an  $\alpha,\beta$ -unsaturated methyl ester [ $\nu$  (neat) 1720, 1650cm<sup>-1</sup>,  $\delta$  (CCl<sub>4</sub>) 3.59 (3H, s), 5.52 (1H, m)] in 75% yield. The product was analyzed for C<sub>10</sub>H<sub>16</sub>O<sub>3</sub> and close examination of its nmr data (CCl<sub>4</sub>, indicated in formula 3) suggested that it is methyl (<u>E</u>)-3-methyl-7-oxo-2-octenoate. The stereochemistry of the double bond was deduced by comparison of the  $\delta$  values of the C·2 proton with known data of related compounds.<sup>5</sup>)



To confirm the structure, the product was transformed to geraniol as follows. Reaction of 3 with 1.5 eq. of MeMgI (Et<sub>2</sub>O, 0°) gave alcohol  $4^{3,4}$  [ $\delta$  (CCl<sub>4</sub>) 1.15 (6H, s), 2.10 (3H, d, J=1.5 Hz), 3.59 (3H, s), 5.52 (1H, m), 90%] which on treatment with HBr in acetone at reflux gave bromide  $5^{3,4}$  [ $\delta$  (CCl<sub>4</sub>) 1.71 (6H, s), 85%]. Reaction of 5 with excess Bu<sub>4</sub>NBr<sup>6</sup> (acetone, reflux, 4h) gave regioselectively methyl geranate  $6^{7}$  (85%). Reduction of 6 (LiAlH<sub>4</sub>, Et<sub>2</sub>O, reflux) afforded geraniol (90%), which was in all respects identical with an authentic sample.

The product 3 is presumably formed through a two step fragmentation process 1+2+3, of which the first step is unprecedented. Since the fragmentation  $1 \rightarrow 3$  under such mild conditions seemed quite unusual, some related reactions were next examined. Reaction of 1 with HCl in MeOH at rt gave  $\alpha$ -chlorovinyl ketone  $7^{3,4,8}$  [ $\nu$  (neat) 1730, 1645cm<sup>-1</sup>,  $\delta$  (CCl<sub>4</sub>) 1.17 (3H, s), 2.30 (2H, s), 70%] accompanying a small amount (10%) of 3. With BF<sub>3</sub>-etherate in benzene (rt, 1h) and with Ac<sub>2</sub>O-pyridine (reflux, 2h) 1 afforded respectively diosphenol 8 [ $\nu$  (neat) 1715, 1660 cm<sup>-1</sup>,  $\delta$  (CCl<sub>4</sub>) 1.16 (3H, s), 2.28 (2H, s), 80%] and its acetate  $9^{3,4}$  [ $\nu$  (neat) 1780, 1730, 1675cm<sup>-1</sup>,  $\delta$  (CCl<sub>4</sub>) 1.17 (3H, s), 2.13 (3H, s), 2.25 (2H, s), 65%] without giving ring fission products.

The reason for the high reactivity of 1 is not clear at present. However, since <u>cis</u> and <u>trans</u>-1,7a-epoxy-3a-methyloctahydroinden-2-one<sup>4,9</sup>) are both quite stable under the above described conditions (MeOH, Na<sub>2</sub>CO<sub>3</sub>), steric strain inherent to 3a,6a-disubstituted cis-octahydropentalene (for example see formula <u>B</u> in footnote <u>2</u>) probably plays an important role. The high stereoselectivity is another remarkable point of the fragmentation reaction and suggests a retro Diels-Alder type reaction mechanism, depicted by formula <u>10</u>. The three-system interaction theory<sup>11</sup>) predicts the conrotatory ring opening of 3a,6a-bond (fomula <u>11</u>), which leads to the formation of the observed <u>E</u>-ester.

We wish to thank Professor Ken'ichi Fukui, Kyoto University, for valuable discussions.



References and Notes

- H. Hashimoto, K. Tsuzuki, F. Sakan, H. Shirahama, and T. Matsumoto, Tetrahedron Lett., <u>1974</u>, 3745.
- 2) Prepared through epoxidation  $(H_2O_2-NaOH, MeOH, -25^\circ, 1h)$  of 6a-methyl-1,2,4,5, 6,6a-hexahydropentalen-2-one.<sup>1)</sup> Assignment of the <u>cis</u> stereochemistry of <u>1</u> is based on the analogy of the formation of related <u>cis</u>-epoxide <u>A</u> from the corresponding  $\alpha,\beta$ -unsaturated ketone under quite similar conditions and on the following evidence: reduction  $(NaBH_4, EtOH)$  of <u>1</u> yielded stereoselectively 2βalcohol,<sup>4)</sup> which in turn was reduced (LiAlH<sub>4</sub>) to a diol <u>B</u>.<sup>4)</sup> The <u>cis</u> relationship of the two hydroxyl group of the diol was shown by the ir band at 3580cm<sup>-1</sup>  $(CCl_4, 2.7 \times 10^{-3} \text{mmol/cm}^3)$ . Nmr spectral data of <u>B</u> in the presence of Eu(fod)<sub>3</sub>,

(<u>B</u> :  $Eu^{3+}=1$  : 0.65,  $CDCl_3$  solution) tabulated below, are satisfactorily accounted for in terms of conformation <u>B</u> and show the <u>cis</u> structure of <u>1</u>.



|   | Ha δ(CDC1 <sub>3</sub> ) | 6.40 (dd, | Jab = 15 Hz, Jae = 3 Hz)                    | *S = | 7.5 |
|---|--------------------------|-----------|---------------------------------------------|------|-----|
|   | Hb                       | 4.82 (dd, | Jab = 15 Hz, $Jbc = 5 Hz$ )                 | S =  | 5.5 |
|   | Hc                       | 7.65 (m,  | Jbc = 5 Hz, $Jcd = 4.5 Hz$ , $Jce = 3 Hz$ ) | S =  | 5   |
|   | Hđ                       | 6.40 (dd, | Jde = 15 Hz, $Jcd = 4.5 Hz$ )               | S =  | 5.5 |
|   | He                       | 8.80 (m,  | Jde = 15 Hz, Jce = 3 Hz, Jae = 3 Hz)        | S =  | 10  |
|   | Hf,g                     | 4.60 (2H, | t, J = 7 Hz)                                | S =  | 5   |
|   | CH 3                     | 3.72 (3H, | s)                                          | S =  | 4   |
| _ |                          |           |                                             |      |     |

\*A. F. Cockerill and D. M. Rackham, Tetrahedron Lett., 1970, 5149.

3) Satisfactory analytical data were obtained for this compound.

- 4) Satisfactory ir, nmr, and mass spectral data were obtained for this compound.
- 5) L. M. Jackman and R. H. Wiley, J. Org. Chem., 25, 2886 (1960).
- G. Biale, D. Cook, D. J. Lloyd, A. J. Parker, I. D. R. Stevens, J. Takahashi, and S. Winstein, J. Am. Chem. Soc., 93, 4735 (1971).
- 7) K. Auwers and F. Eisenlohr, J. Prackt. Chem., 84, 22 (1911).
- For similar ring opening of α,β-epoxy ketone to α-chlorovinyl ketone see,
  N. Neeman, J. S. O'Grodrick, and K. Morgan, J. Chem. Soc., Perkin Trans. I, <u>1972</u>, 2302.
- 9) The <u>cis</u> compound was prepared through epoxidation (H<sub>2</sub>O<sub>2</sub>-NaOH, MeOH, rt, 1h) of 7a-methyl-1,4,5,6,7,7a-hexahydro-2H-inden-2-one.<sup>10)</sup> The trans isomer was yielded from the enone through the following reactions: (1) DIBAL, toluene, -78°, (2) m-CPBA, CH<sub>2</sub>Cl<sub>2</sub>, rt, (3) Jones Ox.
- 10) R. F. Jullien, C. Frejaville, and V. Toure, Bull. Soc. Chim. Fr., 1966, 3725.
- 11) S. Inagaki, H. Fujimoto, and K. Fukui, J. Am. Chem. Soc., 98, 4693 (1976).

(Received October 12, 1977)